Many-Pairs Mutual Information for Adding Structure to Belief Propagation Approximations

نویسندگان

  • Arthur Choi
  • Adnan Darwiche
چکیده

We consider the problem of computing mutual information between many pairs of variables in a Bayesian network. This task is relevant to a new class of Generalized Belief Propagation (GBP) algorithms that characterizes Iterative Belief Propagation (IBP) as a polytree approximation found by deleting edges in a Bayesian network. By computing, in the simplified network, the mutual information between variables across a deleted edge, we can estimate the impact that recovering the edge might have on the approximation. Unfortunately, it is computationally impractical to compute such scores for networks over many variables having large state spaces. So that edge recovery can scale to such networks, we propose in this paper an approximation of mutual information which is based on a soft extension of dseparation (a graphical test of independence in Bayesian networks). We focus primarily on polytree networks, which are sufficient for the application we consider, although we discuss potential extensions of the approximation to general networks as well. Empirically, we show that our proposal is often as effective as mutual information for the task of edge recovery, with orders of magnitude savings in computation time in larger networks. Our results lead to a concrete realization of GBP, admitting improvements to IBP approximations with only a modest amount of computational effort.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Edge Deletion Semantics for Belief Propagation and its Practical Impact on Approximation Quality

We show in this paper that the influential algorithm of iterative belief propagation can be understood in terms of exact inference on a polytree, which results from deleting enough edges from the original network. We show that deleting edges implies adding new parameters into a network, and that the iterations of belief propagation are searching for values of these new parameters which satisfy ...

متن کامل

Tree-structured Approximations by Expectation Propagation

Approximation structure plays an important role in inference on loopy graphs. As a tractable structure, tree approximations have been utilized in the variational method of Ghahramani & Jordan (1997) and the sequential projection method of Frey et al. (2000). However, belief propagation represents each factor of the graph with a product of single-node messages. In this paper, belief propagation ...

متن کامل

An Edge Deletion Semantics for Belief Propagation

Iterative belief propagation is an influential method for approximate inference in probabilistic graphical models, perhaps the most influential method of the last decade. Given its wide-spread applicability in various domains, there has been a great interest in developing semantics for this method to both characterize and control the quality of its approximations. We present in this paper a new...

متن کامل

Discovering Weakly-Interacting Factors in a Complex Stochastic Process

Dynamic Bayesian networks are structured representations of stochastic processes. Despite their structure, exact inference in DBNs is generally intractable. One approach to approximate inference involves grouping the variables in the process into smaller factors and keeping independent beliefs over these factors. In this paper we present several techniques for decomposing a dynamic Bayesian net...

متن کامل

Query-Aware MCMC

Traditional approaches to probabilistic inference such as loopy belief propagation and Gibbs sampling typically compute marginals for all the unobserved variables in a graphical model. However, in many real-world applications the user’s interests are focused on a subset of the variables, specified by a query. In this case it would be wasteful to uniformly sample, say, one million variables when...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008